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Abstract—Explaining the emergence of altruistic cooperation
is a very important matter. By knowing how cooperation emerges
we can create better environments for it to develop and be
maintained. Altruistic cooperation may seem counterproductive
for the individual but it is widespread in the animal world. While
cooperation is traditionally studied in a two-person interaction
- framed in the well-known Prisoners Dilemma - there are
several examples of cooperative behavior in the form of collective
dilemmas: from group hunting, communal activities in human
settlements to agreements between countries to promote ecolog-
ical sustainability. Most of these scenarios can be formulated in
terms of a public goods game (PGG), which is the main focus
of this thesis. Evolutionary Game Theory (EGT) provides a way
for us to study the complex interactions within a population,
assuming that individuals adapt through social learning. There
has been a lot of research effort under EGT trying to explain
how cooperation can beat selfish behavior in the real world.
Notwithstanding, the effects of individual-based learning on
cooperation under a PGG have not received much attention. Will
cooperation emerge in a population where agents are trying to
learn which behavior leads to the best possible outcome, based
on their own experience? This is the question that propelled this
work. We shed some light on how selfish and rational agents
behave when given the choice to incur a cost to themselves
to produce a benefit for another. As conflicting as these ideas
may seem, it was shown that selfish agents can still choose to
cooperate, under certain circumstances.

Index Terms—Cooperation, Public Goods Games, Evolution-
ary Game Theory, Reinforcement Learning, Q-learning, Social
Learning, Social Dilemma

I. INTRODUCTION

Explaining the emergence of altruistic cooperation is not an
easy task. Altruistic cooperation happens when an individual
is willing to pay a cost for another to receive a benefit [1].
This way, altruistic cooperation (henceforth solely designated
as cooperation) may appear to be irrational. Notwithstanding,
cooperative behavior can be observed throughout many
animal species. Lions, chimpanzees and African wild dogs
cooperate in group hunts [2], [3], [4], some birds risk their
lives to alert others that predators are near [5]. Human
populations provide the best examples of such behavior: from
communal activities in small villages [6] to international
relations [7] and macroeconomic behavior [8], cooperation
exists and understanding it is a challenging endeavor. It also
happens at different levels of organization: some authors
argue that cooperation was even in the origin of multicellular
organisms [9].

Cooperate Defect
Cooperate benefit− cost −cost

Defect benefit 0

TABLE I
PAYOFFS OF PRISONER’S DILEMMA FOR THE ROW PLAYER.

Cooperation seems to go against Darwin’s principle of
selection of the fittest. Selection of the fittest might have
led us to believe that evolution is nothing but competition.
Why would an individual risk its survival to provide a benefit
to another? The duality that these concepts (evolution and
cooperation) appear to have, impelled a lot of research effort,
trying to understand the emergence of cooperation and why
it creates better individuals and better societies.

A. Game Theory

In a nutshell, game theory represents the mathematics of
conflicts of interest. This framework was first proposed by
von Neumann and Morgenstern [10]. Its purpose is to study
the strategic decisions and outcomes of rational agents when
interacting with each other. One of the most famous example
of conflict in Game Theory is the Prisoner’s Dilemma. In this
game, an agent can decide to give a benefit to other, incurring
in a cost to himself. The payoffs earned by one player are
summarized in Table 1.
In this type of games the best possible outcome for one agent
is for him to defect while the other agent cooperates. This
way he gets the benefit without the loss of the cost. Also,
an agent that defects will have no incentive to change his
behavior. Changing his behavior will always result in a worse
payoff, regardless of what the other agent plays. This means
that a game played by rational and selfish agents will end
with both defecting, leading to a situation where both agents
get 0 payoff. Individually an agent might think that defection
is the best choice. However, for both agents cooperation is the
choice that maximizes their payoffs. Because of this contra-
diction we are in presence of a social dilemma [11], where
cooperation seems irrational but leads to the best outcome for
the population as a whole.
We can extend a game from pairs to groups. The Public
Goods Game (PGG) is a game similar to the Prisoner’s
Dilemma but played by a group of agents. In this game, each
individual can contribute a quantity to a pile. That pile is then
multiplied by a factor and distributed evenly by all the players.
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Cooperation means contributing to the pile and defection is
just to receive the division of the pile, without contributing.
Again, rational players facing this dilemma will try to defect,
because defectors always get a higher payoff in mixed groups.
However, this reasoning ignores the collective (population-
wide) dynamics, where a continuous process of behavioral
revision takes place [12]. We can model this process using
Evolutionary Game Theory where the agents payoffs are used
to change their behaviors.

B. Evolutionary Game Theory

Darwinism, in short, explains evolution as a process where
the best individuals are selected for reproduction more often
than others. If we associate payoffs with fitness in the models
described previously, the idea of Game Theory can be used
to understand evolution and animal behavior. Evolutionary
Game Theory (EGT) is able to represent frequency-dependent
evolutionary processes, typical of natural selection, but also of
cultural evolution, which occurs at faster time-scales. Cultural
evolution is often based on social learning (see section II-B),
which mathematically is equivalent to a common evolutionary
process: instead of reproduction of the fittest, traits that offer
higher payoffs are imitated more frequently. Unlike Game
Theory, the fitness of an individual agent can not be measured
in isolation; rather it has to be evaluated in the context of the
full population in which it lives.

C. Problem

Given the abundance of competition and the way
cooperation seems counterproductive for the individual,
the main problem is to understand why cooperation is so
widespread in the animal kingdom and in our own societies.
Will cooperation emerge in a population where agents
are trying to learn which behavior leads to the best
possible outcome, based on their own experience? This
is the main question we aim to answer. This work will
focus on explaining how individual learning can influence
the emergence of cooperation. Will the effect of individual
learning be similar to that of social learning, traditionally
studied under the framework of EGT? Specifically, we will
focus on computational simulations of large populations,
consisting of agents using reinforcement learning playing
a Public Goods Game (PGG). We will focus on simulations
because it is not clear how one can study the population
dynamics analytically for Individual Learning. The branch
of individual learning used will be reinforcement learning
because the agents do not need to know the strategic nature
of the game nor what other players are thinking. This makes
them suitable and easy to implement for all types of games.
Also, the agents’ desires are easy to model: they simply
want to obtain the highest possible payoff. This way we can
observe if cooperation will emerge even when agents are
behaving like selfish, rational individuals. PGGs provide a
good model for some interactions present in the real world,
as is explained in more detail on section III-A

This is a very important problem. The solutions may
have an informative and orienting purpose. Informative as
they may help explain why or how cooperation emerged
in the course of animal evolution. Orienting because by
knowing how cooperation emerges we can create better
environments for it to develop and be maintained when
needed. Global warming has been described as one of the
greatest public goods dilemmas that humans face. Knowing
which factors help the emergence of cooperation could help
the cooperative agreements between countries to promote
ecological sustainability [12], [13]. This knowledge can
also help define policies that help the management of
commons, surpassing the Tragedy of the Commons posed by
Hardin [14].

II. RELATED WORK

Computer simulations of artificial societies helped enlarge
the concept of traditional Game Theory. A lot of work about
the mechanisms by which cooperation is able to emerge
in those artificial societies was already made. First we will
present a set of mechanisms that promote cooperation in
populations where individuals are playing Prisoner’s Dilemma,
the most common game to study cooperation. Here the game
is played between two agents, although with Social Learning
(see section II-B) this game is modeled using a whole group
of agents interacting at the same time (a Public Goods Game
(PGG)).

A. Mechanisms that favor cooperation

A lot of research effort has already been made, trying to
find mechanisms that help cooperation beat defection in the
struggle to be a stable strategy. Nowak summarizes five of
these mechanisms that encourage individuals to cooperate [1].
They are kin selection, direct reciprocity, indirect reciprocity,
structured populations and group selection. Each of this
mechanisms is presented with more detail next:

Kin Selection: Kin Selection may be defined as the
cooperation between relatives. Relatedness is defined as the
probability of sharing a gene. It can be assumed that the
purpose of one individual is the safeguard and propagation
of his genes. In this case, by helping a related individual
the payoff of the relate will contribute to the payoff of the
individual, proportionally to their relatedness. Hamilton’s
rule [15] states that the coefficient of relatedness between
two individuals must exceed the cost/benefit ratio for
cooperation to occur.

Direct Reciprocity: An agent might interact with another
agent more than once. If this repeated interaction occurs,
one might remember the behavior of the other and take that
into account in future decisions. Trivers was pioneer in the
study of reciprocity as the basis for cooperation [5]. In his
research he observed examples of cooperation among animals
that kin selection was not able to explain. This led Trivers to
propose Direct Reciprocity as another mechanism to explain
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cooperation.

Indirect Reciprocity: Instead of only helping others
who can help us, indirect reciprocity is about helping those
who can not help us back. Helping someone establishes a
good reputation, which we hope will bring us future benefits.
Nowak and Sigmund [16] proposed a model using EGT
where all the agents in a population have an image score
visible to all other agents. In that model two agents are
randomly chosen, one being the potential donor of some
altruistic act and the other being the recipient. If the donor
chooses to cooperate he incurs a cost to himself while the
recipient receives a benefit greater than that cost. Doing
this increases the image score of the donor; conversely,
if the donor chooses not to cooperate his image score
is decreased. This way, agents that help others can be
rewarded while those who do not are punished. It is shown
that if the strategy used by one agent takes into account
the other’s image score, cooperation dominates the population.

Structured Populations: So far, all mechanisms presented
use well-mixed populations where everybody interacts equally
likely with everybody else. However, real populations are
highly structured. Spatial structures or social networks make
some individuals interact more often than others. To study if
the emergence of cooperation is affected by the structure of
the population one can use evolutionary graph theory [17].
A cooperator pays a cost for each neighbor to receive a
benefit, whereas defectors pay no cost but their neighbors
receive no benefits. This way, cooperators can prevail by
forming network clusters, where they help each other. The
resulting “network reciprocity” is a generalization of “spatial
reciprocity”, initially proposed by Nowak and May [18]. In
this study the authors conclude that spatial structure seems to
be crucial to the emergence of cooperation. However, saying
that each person connects with an exact number of neighbors
is an over-simplistic assumption. Recent advances in network
theory [19], [20], show us that populations are organized
in complex interaction structures, ranging from random-like
graphs to scale-free networks. Later, Santos, Rodrigues and
Pacheco [21] developed a model where Prisoner’s Dilemma
was played in a scale-free network, and it was concluded
that cooperators can take advantage of this kind of structure,
being cooperation the strategy that dominated the population.

Group Selection: What if we think not only about the
individuals but also about the groups they take part in? A
group of cooperators might be more successful than a group
of defectors. A study done by Traulsen and Nowak [22]
tackled this question. In this study, the population was
divided into groups. Cooperators help others in their own
group while defectors do not help. Individuals reproduce with
a probability directly proportional to their payoff and their
offspring are added to the same group. When the size of a
group reaches a threshold, the group will split in two groups.
In this case, another group becomes extinct to constrain the

total population size. Although only individuals reproduce,
selection emerges on two levels. On the lower level (within
groups) selection favors defectors, while on the higher
level (between groups) selection favors cooperation. The
authors concluded that if the benefit/cost ratio is sufficient,
cooperation will spread.

B. Social Learning

Social learning happens when an individual imitates the
behavior of another. To achieve this purpose,a pairwise com-
parison rule can be implemented. After playing a round of the
Public Goods Game (PGG) agents receive their payoff. Then,
a focal agent and one second agent are randomly selected from
the population. The focal agent will imitate the behavior of the
second agent with a probability proportional to the difference
of fitness between those agents. Usually, the Fermi function
is used as a pairwise comparison rule, as studied by Traulsen,
Nowak and Pacheco [23]. The strategy of A will replace that
of B with a probability given by the Fermi function:

pr =
1

1 + e−β(fA−fB)
(1)

The reverse will happen with probability 1 − pr. When
using this update rule, imitation will occur with probability
proportional to the difference between the fitness of both
individuals (fA− fB). The parameter β controls the intensity
of selection. If this value is 0, imitation will occur randomly
and with probability equal to 0.5. If β is very large, imitation
will strongly depend on the difference between payoffs.

This imitation process is equivalent to what we usually
understand as evolution. We can view evolution not only as
reproducing new agents, but also as reproducing ideas and
making other agents willing to imitate one’s behavior. This
spreading of behavior is usually how evolution is modeled
using EGT. As said on section I-A, in a PGG each individual
can contribute a quantity to a pile. That pile is then multiplied
by an enhancement factor and distributed evenly by all the
players in the group.

Public Goods Game: Pacheco et al. [24] showed that
if that enhancement factor is greater than the group size
cooperation emerges. Conversely, whenever the enhancement
factor is smaller than the group size cooperators stand no
evolutionary chance. Then, they introduced a threshold for
participants, below which no public good is produced. This
means that if the number of individuals cooperating in a
group is smaller than the threshold, that group produces no
goods at all. This changes the game from the traditional PGG
to a N-Person Stag Hunt game. In this game the dynamics
of the population are more complex than what was seen
with the PGG. The introduction of this threshold, in most
situations, allowed for the emergence of cooperation even
when the enhancement factor was smaller than the group size.
They also showed the importance of the relation between
group size and population size. Only for group sizes much
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smaller than the population size can cooperation emerge. If
the population is small or the group size spans nearly the
entire population there can be observed a “spite” effect, first
noted by Hamilton [25], which is detrimental for cooperation.

N-Person Snowdrift Game: On another study Souza,
Pacheco and Santos [26] studied the population dynamics of
another game: the N-Person Snowdrift. In this game there also
exists a threshold below which no public good is produced.
If this threshold is reached, a benefit is produced. Unlike the
PGG, the benefit shared by individuals is always the same: it
does not depend on the number of cooperators. Also unlike
the PGG, the cost is divided by all contributors. If there are
more agents willing to cooperate each of them has to pay
less to produce the benefit. Similarly to the aforementioned
study , Souza, Pacheco and Santos concluded that to provide
the best conditions for the emergence of cooperation in the
snowdrift game, the group size should be much smaller than
the population size. The introduction of a threshold similar to
the one employed by Pacheco et al. [24] also provided similar
results. The population dynamics are more complex and
under certain conditions this threshold provides an incentive
to cooperate.

Structured populations: Similarly to what was previously
said about Structured Populations (see section II-A), F. Santos,
M. Santos and Pacheco [27] concluded that cooperation in
Public Goods Games may emerge as an outcome of social
diversity. In this study, the agents are organized in a scale-free
network (see section II-A) and play only with their neighbors.
The diversity in connectivity introduced with the scale-free
network greatly helped the emergence of cooperation. This
effect was already visible when each cooperator gave a fixed
cost per each group he participated. But when each cooperator
gave a fixed cost per individual (each cooperator contributes
a cost equally divided between all groups he participates) this
effect was amplified and the fraction of cooperators on the
population was significantly higher. This means that social
diversity is not the only important factor for the emergence of
cooperation. The way each individual decides what amount
to contribute also plays a big role.

Risk: The perception of risk can also play a role on
the emergence of cooperation. Sometimes certain goals are
shadowed by the uncertainty of its achievement. Milinski et
al [13] illustrated this in actual experiments making use of
a repeated game in which the perception of risk was shown
to be a great factor when dealing, in that case, with the
problem of climate change. Santos and Pacheco [12] modeled
a similar problem using evolutionary game theory. The agents
played a game similar to a PGG with threshold. The agents
had an initial endowment. Cooperators contribute a fraction
of their endowment, whereas Defectors do not. This time,
however, if the group did not reach the threshold all agents
would lose their remaining endowments according to a certain
probability (the risk). Santos and Pacheco [12] arrived at a

similar conclusion as Milinski et al [13]: decisions under high
risk significantly raise the chances of coordinating actions to
achieve a common goal.

C. Individual Learning

With Individual Learning (IL) agents can learn over
time about the game or about the behaviors of others. In
contrast with EGT, players use the history of the game
to decide what action to take next. Some of the models
that have been used for learning in game theory include
reinforcement learning, myopic response, fictitious play,
and rational learning [28]. These models are presented in
ascending order of sophistication according to the amount
of information agents use and their computational capabilities.

Reinforcement learning: When an agent repeatedly
ends up and takes actions in the same situation, he can rely
on his experience to choose or avoid certain actions based
on their immediate consequences. This is the notion behind
reinforcement learning [29]. Reinforcement learners only use
the immediately received payoff to adjust the probability of
conducting the same action accordingly. Actions that led to
better outcomes in the past tend to be repeated in the future,
whereas choices that led to unsatisfactory experiences are
avoided. This way, reinforcement learners are unaware of
the strategic nature of the game. Reinforcement learning can
be implemented in different ways, for example, by using
Roth-Erev learning [29] or Q-learning [30]. The latter being
the focus of this work. A more detailed explanation of
reinforcement learning is provided on section III-E.

Myopic Response: For this family of learning models,
the agents need to have complete information about the
game being played. This means that each player knows the
payoff that he will receive in each possible outcome of the
game. They also need to know the actions that every other
player selected in the immediate past. Agents have a static
and deterministic perception of the environment. This means
that when an agent makes his next decision he assumes that
every other agent will keep his current action unchanged;
and that an agent can predict what future state he will be
in by taking into account its current state and all actions
taken by other agents. Working under such assumption, each
agent can identify the set of strategies that would lead to an
improvement of his current payoff. Because in this model
agents assume their environment is static and deterministic, it
is said that they respond in a myopic fashion: they ignore the
implications of current choices on future choices and payoffs.

Fictitious Play: As with Myopic Response, players in
Fictitious Play (FP) models are assumed to have a certain
model of the situation and decide optimally on the basis of
it. However, instead of assuming other agents will play the
same action they did previously, a FP agent assumes that each
of the other agents is playing a certain mixed strategy. The
estimation of this mixed strategy is equal to the frequency
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with which the counterpart has selected each of his available
actions up until that moment. Thus, instead of considering
the actions taken by every other player only in the immediate
past, FP agents implicitly take into account the whole history
of the game.

Rational learning: Kalai and Lehrer were pioneers in
the study of rational learning [31]. This is the most
sophisticated model of learning in IL. Agents in this model
are assumed to be fully aware of the strategic context they are
embedded in. They also have a set of subjective beliefs over
the behavioral strategies of the other players. Agents must
assign a strictly positive probability to any strategy profile
that is coherent with the history of the game. This means that
agents must be aware of all possible actions made by other
agents. Finally, players are assumed to respond optimally to
their beliefs with the objective of maximizing the flow of
future payoffs.

III. MODEL

After introducing the basic concepts and reviewing related
work, it was decided to propose a new model to study in what
conditions cooperation can emerge. The proposal is a computer
simulation of a Public Goods Game (PGG) played by a large
population, where each individual uses reinforcement learning
in an attempt to improve his payoffs. Individually, agents are
selfish and rational. Considering this fact, it will be interesting
to see under what conditions cooperation can beat defection
in the struggle to be a stable strategy.

A. Public Goods Games with Thresholds

PGGs provide a good model for some interactions present
in the real world. In a PGG, each individual may contribute
a quantity to a pile. That pile is then multiplied by an
enhancement factor and distributed evenly by all the players
in the group. Cooperation means contributing to the pile and
defection is just to receive the division of the pile, without
contributing. The population is divided into groups. In each
round each of those groups plays a PGG. This means that
in each round an agent may play only once (if he is only
in one group) or several times (if he takes part in multiple
groups). Groups are formed randomly and the payoff of an
individual agent is the average of all the payoffs he received
in that round. This group sampling is explained in more detail
in section III-B. In this type of model, it can make sense to
introduce a threshold below which no public good is produced.
Only when the number of cooperators surpasses this threshold
does the group produce any benefit. Consider the way lionesses
hunt in groups [2]. Two individuals are not enough for the
cooperative hunt to be successful. At least three individuals
are required for the group to catch prey and then the more
individuals added, the more successful the group can be. This
example of animal behavior could be modeled as a PGG with
a threshold of three individuals.
Formally, this PGG is defined by some variables:

Payoff obtained C D
1≤k<M −c 0

k≥M kFc
N
− c kFc

N

TABLE II
PAYOFF VALUES FOR THE PGG FOR A GROUP WITH K COOPERATORS

• Each agent can be either a cooperator (C) or a defector
(D) in each round. Players can change strategy between
rounds.

• The variable F is the enhancement factor.
• c is the cost each contributor pays to the group.
• The variable N is the size of the groups playing.
• The variable Z is the population size.
• The variable M represents the threshold. For games

without threshold this simply means M = 1.
Therefore kFc

N represents the division of the pile. For a group
with k cooperators the payoff matrix is presented in table II.
It is worth noting that in any mixed group Cs are always
worse off than Ds. This leads us to the conclusion that, under
traditional Game Theory, everybody ends up defecting, thus
foregoing the public good.

B. Group Sampling

The fitness of one agent can be measured by the average
payoffs of all the games that agent played in that round,
following what was done in Social Learning [24]. Groups are
formed by selecting N agents randomly from the population of
Z agents. This is called the random matching model. Agents
are selected randomly and they are not able to identify each
other. This way we ensure that they are not learning how
to play against a specific individual. The population is well-
mixed, which means that all players are equally likely to
be selected to participate in a specific group. For Structured
Populations group sampling is done differently as we see next.

C. Structured Populations

Real populations are highly structured. Spatial structures
or social networks make some individuals interact more often
than others. Recent advances in network theory [19], [20],
show us that real-world populations are organized in complex
interaction structures, ranging from random-like graphs to
scale-free networks. Scale-free graphs [20], are of particular
interest due to the fact that their degree distribution follows
a power law. This means that some vertices of the graph are
highly connected (often called “hubs”) while the vast majority
of the vertices only have a small number of connections. An
example of a scale-free network is presented in figure 1A. In
order to create a better model of the real world, we will also
study the effects of individual learning on a PGG played on
a population structured in a scale-free network.

Scale-free networks were created according to the Barabasi-
Albert model of growth and preferential attachment [20]. To
create a scale-free network of average degree <ζ>we start
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from a small number of nodes m0, and progressively add
new nodes with degree m =<ζ>/2 = m0. For there to be
preferential attachment the new node connects to an existing
node i with probability pi = ζi/

∑
j ζj where ζi is the degree

of node i. This means that new nodes have a ”preference”
to attach themselves to already heavily linked nodes. By
construction, the Barabasi-Albert model enforces a minimum
group size of <ζ>/2 + 1.

Group Sampling: Under an heterogeneous population
like a scale-free network agents are no longer equally likely
to play against each other. Agents now only play with their
neighbors. An agent with ζ neighbors plays ζ + 1 PGGs,
each with a given group size. One with all neighbors and
then a game for each of the neighbor’s neighbors. This group
sampling is represented on figure 1B. The individual fitness
of the agent derives from the payoff accumulated from all
games he partook in.

A B

Fig. 1. (A) Example of a scale-free network. (B) Group sampling on a scale-
free network: The central individual (blue) participates in 6 groups, each with
its own group size. These groups are represented by the blue circles

D. Risk

Up until now, failure to reach the threshold meant the pile
was not divided by the agents. With the introduction of risk
(r ∈ [0, 1]) now the pile is still divided with probability 1− r.
This means that we can consider r = 1 for the PGG played
under traditional conditions.

E. Reinforcement Learning

Now that we know what payoffs agents get, we need
to model how agents will update their strategies according
to the payoffs they received. Q-learning [30], [32] is the
technique of reinforcement learning we will mainly use. It
is a so-called action value method. It consist of an update
rule, an action selection rule, and an action value. The update
rule determines how action values are updated based on new
experience. The action selection rule determines which action
to take next. The action value indicates the quality of taking
one action relative to another.

Single-state Q-learning: For this algorithm all initial
action values are initialized to some value Q0 ∈ R. Using
small initial action values (relative to payoffs) speeds up
learning in the beginning because it increases the importance
of those payoffs. However, if we wish to allow for greater
exploration all we have to do is use initial action values much
greater than the payoffs an agent can receive. According to

those action values the action selection rule will select an
action to take. Actions with higher values will have more
probability to be chosen than those with lower values. The
action selection rule used is softmax action selection. We
will calculate the probability ps,a of selecting an action a
with an action value qs,a for current state s according to the
Boltzmann distribution:

ps,a =
e(qs,a/τ)∑
a′ e

(qs,a′/τ)
(2)

Temperature τ controls the rate of exploration: much explo-
ration at high temperature, little exploration at low tempera-
ture. To let the behavior stabilize, the temperature τ can be
decreased over time. After taking action a and receiving payoff
u the action values are updated as follows:

qs,a ←

{
qs,a + α(u− qs,a) If action a was taken,
qs,a otherwise.

(3)

where α ∈ [0, 1] is the learning rate. An higher learning rate
puts more weight on more recent payoffs. If the learning rate
α = 0, nothing is ever learned; if it is α = 1, the action
value of an action simply equals the last payoff earned for
that action.

F. Initial Distribution of Agents

The simulations start with an even distribution of cooper-
ators and defectors. This can be achieved by simply creating
all agents with the same action value for both strategies
(cooperating and defecting). This way we would ensure all
agents start with the same probability of either cooperating or
defecting. However, we do not think this is a good model
of the real world. Populations are not created with copies
of agents that all start under the same conditions. So we
chose another strategy that also ensures an even distribution
of cooperators and defectors while maintaining a better degree
of heterogeneity. Instead of all players choosing to cooperate
with probability pc = 0.5 we spread the agents’ probability
of cooperating across the full spectrum pc ∈]0, 1[. This
means that some agents start with a probability of cooperating
pc = 0.1, others with pc = 0.2, and so on. Because this is an
uniform distribution the average probability of cooperating of
the whole population is still pc = 0.5 . This was achieved by
changing the initial action values of the agents.

IV. RESULTS

A. Methods

In our model an agent is defined by its two action values
(one for each behavior: cooperating or defecting). These
action values represent the quality of choosing one behavior
over the other. Agents play several rounds of a Public Goods
Game (PGG) sequentially. In each round each agent chooses
to either cooperate or defect according to its action values.
Then the groups are formed and their respective payoffs
calculated. In the end of the round each agent receives a
certain payoff associated with its group and the behavior
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chosen and updates its action values accordingly. Then, for
the next round, they can choose to keep that behavior or
change it. What we call a simulation is several of those
rounds played sequentially. Agents keep updating their action
values in every round and play the PGG for 1500 rounds
per simulation. We can run several simulations (these are
separate entities, not sharing any information between them)
under the same conditions and then statistically analyze the
results in order to have more robust data. Each point in all
graphs is an average of at least 20 simulations run under
the same conditions. For the scale-free networks 6 different
networks were created and 100 simulations ran in each one.
When the deviation between simulations was negligible it
was, therefore, not shown.

First we observed the impact of changing the parameters of
the Q-learning algorithm. Changing the learning rate made
no difference on the amount of cooperative actions of the
population after the population had stabilized. Changing the
way the temperature τ of the action selection rule decreases
only changes the amount of rounds needed for the agents to
stabilize. After several simulations it was decided to decrease
this temperature τ as such:

τ(i) = min{τ, τ log(i/3)/(i/3)} (4)

Where τ(i) is the temperature used at the ith round and τ is a
value determined by us which only needs to be high enough
to make sure there is enough exploration in those first rounds.
This way the agents start to stabilize at around the 600th round
which gives plenty of time to explore what is the best behavior.
The cost which agents pay to cooperate is fixed c = 1 on all
subsequent graphs.

B. Influence of Group Sampling in well-mixed Populations

A set of simulations were run to see what is the effect
of the stochastic processes inherent to finite populations.
The simulations were run with a population of 200 agents
(Z = 200) , group size is fixed at 5 (N = 5) and there is no
threshold (M = 1). The results are shown in figure 2. Each

Fig. 2. Fraction of cooperative actions ρ for each value Fc/N .

point represents the average fraction of cooperators (after the
population stabilized) for 20 simulations for a certain Fc/N .
The whiskers represent the deviation of values between those
20 simulations. Each simulation was run for 1500 rounds. The
fraction of cooperators was measured by taking the average of
the last 500 rounds (once the population had stabilized). The
red circles represent simulations where each agent participated
in one and only one group. The blue squares and yellow
rhombus represent simulations where each agent participated
in at least 40 groups and 80 groups, respectively. For each
agent on each round, the payoff received was the average
of the payoffs of all the groups he participated. This way,
the stochastic effects of finite populations were dampened. As
we can see, those stochastic processes play a detrimental role
for cooperation when Fc/N > 1. They also introduce more
deviation between simulations. Given our goal of promoting
cooperation, from now on every simulation will be run with the
formation of several groups per individual. On all subsequent
graphs, every agent partakes in at least 80 groups. This number
was chosen because it is high enough to approach the asymp-
totic limit but still manageable in terms of simulation run
time. Similarly to what was found analytically and with social
learning [24], on a PGG without thresholds cooperation is
advantageous only when Fc/N > 1Fc/N > 1Fc/N > 1.

C. Introduction of a Threshold

The introduction of a threshold makes the population
dynamics more complex as seen in figure 3. Here the
simulation parameters were similar to those of figure 2 except
for the group size and the introduction of the threshold. Here
group size N = 10 . Now cooperation can be advantageous
even for Fc/N < 1.

Fig. 3. Fraction of cooperative actions ρ for each value Fc/N under different
Thresholds.

An interesting point appears in figure 3. For Fc/N = 0.8
we can see that there is an high deviation in the value of
the fraction of cooperation for threshold M = 7. What
could explain this? A look at the learning gradient might
provide an answer. We use the learning gradient to understand
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under which circumstances cooperating is an advantageous
behavior over defecting. This is accomplished by calculating
the average difference in fitness between cooperators and
defectors. We multiply that difference by the fraction of
cooperative actions (ρ) and defective actions (1− ρ) to allow
an easier comparison with social learning. This way we end
up with the following formula for the learning gradient:

LG(ρ) = ρ(1− ρ)(fC − fD) (5)

Where fC and fD is the average fitness (payoffs) of agents that
chose to cooperate and defect in that round, respectively. This
learning gradient characterizes the behavioral dynamics of the
population. Whenever the gradient is positive (LG(ρ) > 0)
it means that a cooperative action is providing more payoff
than a defective action, which means that cooperation is more
likely to be reinforced by individual learning. Inversely, if
the learning gradient is negative (LG(ρ) < 0) it means that
defection is more likely to be reinforced. This is presented
in figure 4. For each curve the learning gradient is zero

L
G
(
)

Fig. 4. Learning gradient LG(ρ) under different thresholds for Fc/N =
0.8. The open circle represents the unstable fixed point and the filled circle
represents the stable fixed point. The arrows indicate the direction in which
the amount of cooperative actions will tend to move for threshold M = 7.

LG(ρ) = 0 in two points. The one to the left is an unstable
fixed point and the one to the right is a stable fixed point.
On all simulations, initially, the population is evenly divided
between agents that choose to defect or cooperate. Figure 4
shows that for threshold M = 7 and a fraction of cooperative
actions ρ = 0.5 the learning gradient is 0. This is the
unstable fixed point. For this reason, depending on whether the
random nature of the game favors cooperators or defectors, the
population can either enter a state of full defection or a state
where the fraction of cooperators is around ρ = 0.85. The
latter point is the stable fixed point. For ρ = 0.85 and M = 7
any deviation in the composition of the population produced
by the stochastic processes is negated after some rounds and
the population remains with the same fraction of cooperators.
The unstable fixed point explains the high deviation present
in figure 3 for point Fc/N = 0.8 and M = 7. The nature
of these fixed points leads us to the following conclusion:
as long as there are enough cooperative actions in the

population to surpass the unstable fixed point of the
threshold, its existence is advantageous for cooperation.
This results are, once again, similar to what was found under
social learning [24].

D. Group Sizes

So far the group size was always much smaller than the
population size (N ≤ 10 and Z ≥ 200). What happens if
we increase the group size to levels close to those of the
population size? As with social learning [12], [24], once the
group size spans nearly the entire population we can observe
the “spite” effect [25], which is detrimental for cooperation.
This is shown in figure 5. The simulations were run with a
population of 500 agents (Z = 500). The enhancement factor
was Fc/N = 0.8. Cooperation is maximized when groups
are small. This is valid both when the threshold was constant
or increased linearly with the group size (however with the
latter, to a lesser extent).

constant variable

L
G
(
)

Fig. 5. Learning gradient LG(ρ) for several group sizes (N ). On all dashed
curves the threshold is constant M = 3. Solid curves represent simulations
where the threshold increases linearly with group size M = 0.3N .

E. Risk

Following what was said about risk (section III-D) figure 6
shows the results of introducing risk in the PGG. Group size
N = 10 and threshold M = 5 . Once again, by analyzing
the stable fixed point in figure 6B (the rightmost point where
LG(ρ) = 0) we can see that as risk gets higher so does the
fraction of cooperators present in the population. The results
present in figure 5 and 6 further reinstate the findings of
Santos and Pacheco [12]: ”When applied to the problem of
climate control, the present results suggest that decentralized
agreements between smaller groups (small N), possibly fo-
cused on region-specific issues where risk is high and goal
achievement involves tough requirements (large relative M),
may be preferable to world summits, because they effectively
raise the probability of reaching an overall cooperative state.”

F. Structured Populations

With all the previous results, we can have a good under-
standing of the behavioral dynamics of the PGG played by an
unstructured well-mixed population. But how will the network
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Fig. 6. Learning gradient LG(ρ) on a PGG with risk

structure affect the behavioral dynamics of the population?
Figure 7 shows the changes on the learning gradient with
structured populations. The dashed line represents the well-
mixed population (as we were using previously) and acts as a
baseline. The blue and yellow curves represent the structured
population (scale-free). The conditions of the simulations un-
der the well-mixed and structured populations were equivalent:

• Population size Z = 1000 agents
• Group size N = 7 for well-mixed population. Each agent

participates in 7 groups per round instead of 80 as was
being used before. The scale-free networks were created
with an average degree ζ = 6 which means the average
group size is <N>= 7 = <ζ>+1. It also means that,
on average, each agent will participate in 7 groups per
round.

• The threshold is constant M = 3 for the well-mixed
population and for the blue curve. For the yellow curve
the threshold increases linearly with the group size M =
3N/7. The choice ofM = 3N/7 ensures that the average
value ofM is the same for both curves.

• Enhancement factor is Fc/N = 0.9.

L
G
(
)

Fig. 7. Learning gradient LG(ρ) for an homogeneous (well-mixed) popu-
lation (dashed curve) and heterogeneous (scale-free) networks (solid curves)
under Fc/N = 0.9

Looking at figure 7, we can observe that cooperators take

advantage of such an heterogeneous network. The stable
fixed point (the rightmost point where LG(ρ) = 0) is higher in
both structured populations as compared with the well-mixed
one. This is especially true for the structured population where
the threshold is fixed. However, we can also observe that even
though the stable fixed point is higher for the blue curve, its
height on the y-axis is much smaller. This means that this type
of structure with a fixed threshold is only advantageous under
stricter circumstances than its variable threshold counterpart.
This is observable, for example, if the enhancement factor is
Fc/N = 0.8. In that case, the scale-free network with variable
threshold is still advantageous over the well-mixed network.
However, the learning gradient for the structured network with
a fixed threshold is always negative, meaning that cooperators
are worse off than with the well-mixed structure.

V. CONCLUSION

In this work we presented individual learning as another tool
to study the emergence of cooperation. We mainly focused
on computational simulations of agents using reinforcement
learning playing a Public Goods Game (PGG). These simu-
lations gave us a good insight of how selfish, rational agents
behave when presented with the choice of incurring a cost to
themselves to give a benefit to another agent. As conflicting
as these ideas may seem, it was shown that selfish agents
can still choose to cooperate, under certain circumstances.

A. Summary of Contributions

Proposal of new model: There has been a lot of research
effort trying to explain the emergence of cooperation using
social learning. In this work we tackled the problem in a
different fashion: what would happen if agents were actually
trying to learn by themselves, instead of imitating each
other’s behavior? In this thesis we propose a model where
agents play a PGG while using reinforcement learning in an
attempt to maximize their payoffs.

The influence of group sampling: The agents form groups
from the population to play the PGG. The more groups an
agent partakes in, the better for cooperation. Participating
in more groups dampened the negative stochastic effects of
finite populations. It also improved the final payoffs of the
agents that chose to cooperate as compared to those who did
not.

Introduction of a Threshold: By introducing a threshold
in the PGG this game no longer has a linear return. Now
if a group fails to meet that threshold, all agents of that
group receive no payoff. This provides a further incentive
to cooperate. The higher the threshold the more cooperators
stand to gain, as long as there are enough cooperators in the
population to surpass the unstable fixed point.

Group sizes: Cooperation is maximized when the groups
playing the PGG are much smaller than the whole population.
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Introduction of Risk: If we introduce risk in the PGG
(on failure to reach the threshold, agents still receive the
payoff with probability 1 − r). Using our model it was
shown that the higher the risk the more agents are willing to
cooperate.

Structured Populations: Real populations are highly
structured. Instead of agents interacting equally likely to each
other, a structured population network was introduced. It was
shown that cooperators take advantage of the heterogeneous
nature of the scale-free network to a great extent.

All results obtained with individual learning further reinstate
the findings made with social learning. It seems that these
two mechanisms are alike, although they work at different
levels of organization.

B. Future Work

It is hard to say that a work is complete. There are several
possible paths to enhance the present solution, and some are
presented next.

More learning algorithms: We only used Q-learning
in our model. For the results present here to be more robust it
would be important to have other learning algorithms produce
similar results. One could use, for example, Roth-Erev
learning [29] and see how those agents fared compared to
those using Q-learning.

Experimental Validation: It would be interesting to
try to mimic the experimental results of Milinski et al. [13]
with reinforcement learning. If the experimental results using
real people were the same as with agents using reinforcement
learning we could make the case that maybe humans behave
like selfish, rational agents. This could provide some insight
into our own human nature.

Impact of Networks: We studied briefly the impact of
scale-free networks on the behavioral dynamics. We saw that
hubs tend to mainly want to cooperate while the other nodes
fall to either side of the spectrum. But a more thorough
analysis can follow. What made hubs behave so differently
than the other nodes?

Individual learning and Social Learning: Even though
individual learning produced similar results to those of social
learning, it is not clear what would be the results of both
learning processes employed simultaneously. This approach
could provide a more accurate model of human behavior.
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